Home Project-material Air Injection Studies For Enhanced Oil Recovery

Air Injection Studies For Enhanced Oil Recovery

Dept: CHEMICAL ENGINEERING File: Word(doc) Chapters: 1-5 Views: 3

Abstract

Conventionally, air injection has been used for recovery of heavy crude oil in the production field, but studies have shown that depletion of light crude oil in the reservoir leads to abandonment of such wells. Hence, this work studied the kinetics and combustion of light crude oil in-situ the reservoir to understand their potentials for high-pressure air injection (HPAI) enhanced oil recovery (EOR). Advanced thermo-kinetic simulation and Pressure-Volume-Temperature tools (AKTS and PVTsim) were coupled with non-isothermal Differential Scanning Calorimetry (DSC) measurements and Accelerating Rate Calorimeter (ARC) for the studies. The combustion and kinetics of three (3) light crude oils obtained from Offshore of Newfoundland, Canada were precisely described by the methods. It was observed that the crude with the lowest API of 30.214 had the lowest enthalpy change of 10.9 J/g and the highest onset oxidation temperature of 220 oC, while the crude with the highest API gravity of 46.963 h

CHAPTER 1 FOR THIS COMPLETE PROJECT WORK TITLED: AIR INJECTION STUDIES FOR ENHANCED OIL RECOVERY

INTRODUCTION

1.1 Preamble

Enhanced Oil Recovery (EOR) is a tertiary recovery process which is normally applied after primary and secondary recovery, to mobilize oil trapped in pores by vicious capillary forces. Thermal, chemical, solvent and gases are the most common form of various EOR process (Isco, 2007). Due to the decline of oil reserves caused by the rising oil production, and clamours for environmentally friendly practice in EOR techniques, petroleum engineers are currently driving EOR projects towards more efficient techniques. One of such efficient technique is the Air/Flue gas injection which is motivated by inexpensive source of air as well as environmentally friendly carbon-dioxide sequestration. The motivation for the use of air as an injectant in the EOR project is because of its abundance, availability and low cost. It can simply be supplied by the use of a compressor, with overall project having low initial and operating cost in comparison to other EOR methods (JOGMEC, 2011).

Air for increasing oil recovery from reservoirs dates back to the 1940’s and early 1950’s (Hvizdos et al., 1983) and by the 1960s and 1970, about forty (40) in-situ full field or pilot projects had been undertaken throughout the world with North America topping such projects (Pwaga et al., 2010). This technique, apart from laboratory studies has been implemented in fields such as West Hackberry in Louisiana, Horse Creek North and South Dakota, Zhongyuan and Liaoche oil fields in China, H field in Indonesia, South Bridge in California and other countries such as Romania, United Kingdom, Japan, Canada, India, Argentina, Venezuela have maintained laboratory and field studies too (Sakthikumar et al., 1996; Ren et al., 1999; Mendoza et al., 2011; Niu et al., 2011; Iwata et al., 2001; Xia et al., 2004; Zhu et al., 2001). Air has also been used in heavy oil recovery and enhancement of this technique can lead to significant light oil production (Surguchev et al., 1998).

An alternative to air injection is the flue gas (which contains nitrogen and carbon-dioxide) produced from the combustion of oxygen contained in the air to sweep oil. This EOR technique, when applied to light oil is known as light oil air injection while in heavy oil reservoir, it is called in-situ combustion. (Kuhlman, 2004; Teramoto et al., 2006; Turta et al., 2007; Li et al., 2009).

Some studies carried out to describe criteria as well as performance of air injection projects gave positive results even though experimental condition could not mimic the adiabacity of the reservoir (Sakthikumar et al., 1996). Temperature regimes, heat energy content, pressure and temperature dependence during oil combustion were also studied using simple Arhennius type model which assumes constant kinetic parameters throughout the reaction (Hvizdos et al., 1983; Elgibaly, 1998; Niu et al., 2011; Li, et al., 2009). There have been few researches which reports on the complexities of combustion reaction of crude oils where kinetic parameters fluctuate or the alteration of the oxidations zones.1.2 Problem Statements

The following are the problems, research gaps in literature and previous studies on enhanced oil recovery with reference to light oil air injection projects.

1. Despite the several thermal and kinetic studies carried out on Enhanced oil recovery, there has been no research that addresses how the kinetic parameters fluctuate during the combustion process for the benefit of oil recovery.

2. Arrhenius type of equation and simple nth order model have been used to study oxidation of oil and these do not adequately capture the complexity of the reaction (such as the trend of activation energy as reaction progresses), therefore, the need to study other models and techniques.

3. Very few and scanty literatures exist that captures the various oxidation reaction zones of crude oil.

4. Interaction parameters of temperature, pressure, extent of air oxidation and sulphur content on crude oil recovery have received low discussions in literatures, hence the need to focus attention on them for the benefit of enhanced oil recovery especially in countries like Nigeria where EOR is yet to be fully practiced.1.3 Justifications of Research

This sections highlights the benefits of this research.

1. This study will provide insight into improved oil recovery from low producing/ abandoned wells.

2. The iso-conversional approach will help capture the complexity of crude oil oxidation reaction.

3. The findings will benefit upstream companies operating in Nigeria currently at the secondary production stage and at verge of abandoning the wells.

4. This will also help the federal Government of Nigeria during negotiations of oil well sales.

5. It will open up researches and studies on catalytic potential of Nigeria’s mine tailings.1.4 Aim and Objectives of Research

The aim of this research work was to investigate the kinetics, combustion of air and combustion air products for enhanced oil recovery.

This aim was achieved by the following objectives:

1. Using differential iso-conversional method to describe oxidation of crude oils in-situ reservoir.

2. Studying oxidation behaviours of crude oil in an adiabatic environment to verify non-isothermal differential scanning calorimetry (DSC) results.

3. Using tailing as catalyst to alter oxidation characteristics of crude oils.

4. Studying the combined effect of parameters of reservoir conditions such as temperature, pressure, gas content on oil recovery.1.5 Scope of Research

The scope of this research are focussed on:

1. Combustion behaviours and kinetics of the oxidation reaction of low pressure reservoir of light crude oils.

2. The use of mine tailings to improve the reactions for the benefit of improved oil recovery.

3. Modelling of air injection process with respect to the progress of oxidation kinetics with temperature.

4. The use of crude oil databank and PVT tests to analyse the enhanced oil recovery process for Nigerian crude oils.


Recent Project Materials

Abstract This research work empirically explored the perception of mass media as tools for sensitizing rural...
Word(doc) 1-5 1 Read More
Abstract This research work focused on the perceptions of female mass communication students of Enugu state ...
Word(doc) 1-5 Read More
Abstract The aim of this study was to examine the perception of cybercrime among Nigerian youths using Cari...
Word(doc) 1-5 Read More
Abstract Advertising as a profession and a field of study explains the reason why it cannot be underestimate...
Word(doc) 1-5 Read More
View More Topics

Browse by Departments