1.0 INTRODUCTION/LITERATURE REVIEW
1.1 INTRODUCTION
Fish is a very vital source of high quality protein and constitutes an important part of man’s diet. It is the most important animal protein food available in the tropics, and it represents about 14% of all animal protein on a global basis (Abolagba and Melle, 2008; Eyo,1997; 2001; Clucas and Ward, 1996) who noted that, immediately fish dies, it remains in first class quality only for a short while. However, spoilage soon sets in which is occasioned by an increase in the ambient temperature that triggers favorable conditions for microorganisms to thrive. Thus, the quality of fish as well as its potential keeping time deteriorates rapidly leading to food loss with regards to acceptable quality. This deterioration is due to growth of microorganisms or non-microbial causes such as lipid oxidation (Martin, 1994). Essuman (1992) stated that Africa is endowed and constitute a rich source of numerous species of fresh fish. Such species include Clarias spp, Bagrus spp., Tilapia spp amongst others (Mabawonku et al., 1982 and Motwani, 1970). The smoking of fish from smouldering wood for its preservation dates back to civilization (Olokor, 2007). It is also noted that apart from giving the product a desirable taste and odour, smoking provides a longer shelf life through its anti-bacterial and oxidative effect, lowering of pH, imparting desirable colouration as well as accelerating the drying process and acting as antagonist to spoilage agents (Sengor et al., 2004; Eyo, 2001; Horner, 1997). Martin (1994) stated that bacteria (Staphylococcus aureus), yeasts (Saccharomyces cerevisiae) and moulds (Penicillium and Aspergillus) were the commonest microorganisms associated with smoked fish.
AIM AND OBJECTIVES
This work is aimed at investigating the microbial load on smoked fish sold at Owerri Metropolis and its objectives is as stated;