I.0 INTRODUCTION
1.1 BACKGROUND OF STUDY
The term millet (Eleusine coracana) is used for any of several small seeded annual grasses that are opt important mainly in Asia, African and in semi—arid region. Millets are one of the cereals aside the major wheat, rice and maize. Millets are major foods sources for millions of people Especially those who line in hot, dry areas of the world. They are grown mostly in marginal areas under agricultural conditions in which major cereals fail to give substantial yields. (Adekwile 2012).
Five types of millets that are common, Setaria Italica, Pennisetum Typhodeum or Pennisteum Glausim (Pearl Millets), Eleusine Coracana (Finger Millet), Echinocloa Frumentecea and Pannicum Miliaccum (proso millet). Millet is processed in so many ways for preparation of various food products some of the primary process involved are dehulling and milling in order to produce flours, grits and dehulled whole grains. These intermediate products are used to prepare staple foods like cooked whole grains, thin and thick porridges, steam cooked products like Cousous and Zaki preparation of Tuwo and Fura. (Nkama et al, 1997).
Due to enzymatic breakdown of starch to sugars during germination, the viscosity and the bulk density of porridge made from sprouted grains are significantly lower. The terms sprouting, germination, malting and fermentation are used interchangeably to refer to the soaking of grains in water until saturated and then germinating them under controlled conditions like barley millets are malted (soaked) and germinated) for brewing purposes, however, fermentation and germination of millet seeds has been reported to improve the nutritional quality by increasing the contents and availability of essential nutrients, and this is not so in raw millet flour. (Obilana et al, 2002).
More so, long germination period result in significant losses in dry matter through respiration, which is undesirable. Millet fermented for 10hrs and germinated for 72 hrs last up to 9.5% dry matter. This loss of essential nutrient during germination needs to be minimized since very little research has been done on nutrient and anti-nutrient interaction during germinating of cereals (millets) especially finger millet (Eleusine corcana), this research focuses on nutritionally beneficial changes such as the lowering of anti-nutrients and increase in protein digestibi9lity compared with the loss of matter (AOAC 1995).
1.2 PROBLEM STATEMENT
This work will have basically financial problem in the procurement of the raw materials, also in the running of the approximation analysis and ant-nutritional composition of the raw, fermented and germinated millet flour.
To know effect of fermentation and germination on the nutrient and anti-nutrient of millet which will help educate industries who use millet for production on which best method to work with.
1.3 AIM AND OBJECTIVES
The purpose of this work is to determine the nutrient and anti-nutrient composition of millet flour produced by three different methods.
1.4 SCOPE OF STUDY
The research work will cover several areas such as:
Procurement of the raw material,
Soaking and fermentation of the raw material for some days at room temperature,
Determination of the proximate composition of the raw, fermented and germinated millet,
Comparing the results of the nutrients of raw, fermented and germinated millet,
Determination of raw, fermented and germinated millet,
Determination of the anti-nutrients o the three samples.
1.5 JUSTIFICATION
This work is of very importance because in carrying the necessary analysis on the raw, fermented and germinated millet flour to help check the best method of reducing the anti-nutrient and increasing the nutrient content.