1.0 INTRODUCTION
Natural rubber, also called India rubber or caoutchouc as initially produced, consists of polymers of the organic compound isoprene, with minor impurities of other organic compounds, and water. Malaysia and Indonesia are two of the leading rubber producers in the world. Forms of polyisoprene that are used as natural rubbers are classified as elastomers. Natural rubber has characteristic properties such as large enlongation, high elasticity, high tensile strength and tear strength and satisfactory coating film strength. Natural rubber is utilized in wide variety of products including household materials such as gloves for surgeries and contraceptives. Rubber is harvested mainly in the form of the latex from the rubber tree. Raw rubber comes from the field or plantation in two basic forms: field latex and field coagula.
Natural Rubber Latex contains a small amount of non-rubbers, which include a variety of protein and which have played a role in the biosynthesis and stabilization of rubber latex within the vessels of the tree. The latex of Hevea brasiliensis is a complex colloidal dispersion of biochemical components consisting of polyisoprene latex rubber particles and non-rubber components in an aqueous serum phase. Some adverse effects of these non-rubbers are well documented. These non-rubbers continue to play a role in the subsequent processing behavior of the Natural Rubber Latex, its long-term stability, and catalyzing crosslinking reactions through free radical and ionic mechanisms resulting in covalent bonds. The protein sheath, which may be amphoteric in nature, around the latex particle is conjectured to facilitate the movement of curatives, usually carbon-, sulfur-, and nitrogen-containing materials, into the latex particles by providing an intermediate transport mechanism from the water phase to the rubber phase. The removal of the non-rubbers in treated Natural Rubber Latex slows down the maturation process, hence translating into a longer “pot life.”
Rubber is used as raw material in many products today, which can be divided into two main types, i.e. natural and synthetic rubber. Raw natural rubber involves processing fresh latex or field coagula obtained by cutting the rubber tree, into a raw material ready for use in making rubber products further on. Raw materials in the natural rubber industry consist of fresh (field) latex, obtained by cutting rubber trees, and field coagula, which include cup coagula, cup lump, tree lace, bark scraps, earth scraps and smoked sheet cuttings, etc.
1.1 NATURAL RUBBER LATEX
The latex is a sticky, milky colloid drawn off by making incisions in the bark and collecting the fluid in vessels in a process called “tapping”. The latex then is refined into rubber ready for commercial processing. In major areas, latex is allowed to coagulate in the collection cup. The coagulated lumps are collected and processed into dry forms for marketing. There are different rubbers such as Hevea brasilienisis, congo rubber, dandelion e.t.c.
Latex is the polymer cis-1, 4-polyisoprene with a molecular weight of 100,000 to 1,000,000 daltons. Typically, a small percentage (up to 5% of dry mass) of other materials, such as proteins, fatty acids, resins, and inorganic materials (salts) are found in natural rubber. Polyisoprene can also be created synthetically, producing what is sometimes referred to as “synthetic natural rubber”. Natural rubber is an elastomer and a thermoplastic, but as rubber is vulcanized, it turns into a thermoset. Most rubber in everyday use is vulcanized to a point where it shares properties of both; i.e., if it is heated and cooled, it is degraded but not destroyed. Naturally coagulated rubber (cup lump) is used in the manufacture of TSR10 and TSR20 grade rubbers. Processing of these grades is a size reduction and cleaning process to remove contamination and prepare the material for the final stage of drying. The dried material is then baled and palletized for storage and shipment (Hosler et al.,1999).
1.2 PRODUCTION OF NATURAL RUBBER LATEX
Rubber tree is an important industrial crop for natural rubber production. Latex comes from the Hevea brasiliensis tree, which grow in tropical regions. They typically reach 20-30 meters in height in the rubber plantations, and are able to produce commercial quantities of latex at about 7 years of age, depending on climate and location. Hevea latex is collected through tapping of trees in the natural forest.
1.3 GENERAL PROPERTIES OF NATURAL RUBBER LATEX
Rubber exhibits unique physical and chemical properties. Some of the properties are stated below:
The electrical insulating properties of pure rubber are inferior to those of vulcanized rubbers (Leonid Viktorovich, 2009)
1.4 APPLICATIONS OF NATURAL RUBBER LATEX
Because of their electrical resistance, soft rubber goods are used as insulation and for protective gloves, shoes and blankets; hard rubber is used for articles such as telephone housings, parts for radio sets, meters and other electrical instrument (Leonid Viktorovich, 2009).
1.5 PROTEIN IN NATURAL RUBBER LATEX
The total protein content in latex has been estimated to be about 2-3%, however, discrepancies in the distribution of the proteins between the major phases of latex exist. Report shows that 20% of the total proteins were absorbed on the rubber surface, 66% in the C-serum and 14% in the bottom fraction.
1.5.1 Proteins on the surface of the rubber particle
The existence of proteins in association with phospholipids on the surface of rubber particles was recognized as early as 1953 by Bowler. The attributed that this protein phospholipid layer imparted a net negative charge to the colloidal stability of these particles. By measuring the iso-electric points of various latex samples, he concluded that there was more than one protein adsorbed on the rubber surface and that the relative proportion of the adsorbed proteins varied with clones.
1.5.2 Protein in the C-serum
Nearly half of the enzymes examined in natural rubber latex glycolytic appeared to be located in the C-serum of latex. These include enzymes for the pathway as well as many of the enzymes for rubber biosynthesis. The first protein to be isolated from natural rubber latex was from C-serum and it was named ?-globulin.
1.5.3 Protein in the bottom fraction
Proteins in the bottom fraction are essentially studied as the soluble proteins in B-serum. These have been examined with various techniques, including paper electrophoresis, starch gel electrophoresis etc. (Ferreira et al., 2009).
1.6 DEPROTEINIZATION OF NATURAL RUBBER LATEX
Denaturation helps in protein reduction and removal of undesirable residual protein, and there are several ways of doing this which would be reviewed here. The different methods include saponification, surfactant washing and enzymatic treatment.
The cleavage of proteins in NR latex was found to proceed with concomitant formation of low molecular weight polypeptides. This results in lowering gel formation of the enzyme-treated latex, indicating modification of the remaining proteins at the rubber chain-end. Washing NR latex with surfactant would efficiently reduce and remove proteins from NR latex particles through denaturation and transferring them to the serum phase. The relatively stable gel formed during storage of surfactant-washed NR latex is an indication of the absence of branch formation of proteins at the rubber molecule terminal. Saponification by strong alkali would hydrolyze the proteins and phospholipids adsorbed on the latex particle surface. The reason of the significantly higher gel formed in saponified NR latex is still not clear. The present study shows that deproteinization treatments result in modification of the proteins at the surface of NR latex particles and also those freely-suspended in the serum. The cleavage or the denaturation of the rubber proteins during purification by washing has a profound effect on the properties of the deproteinized NR latex upon storage, in particular the thermal oxidative aging properties of the rubber obtained.